RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Model-based linear control of nonlinear pneumatic soft bending actuators

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2024

Model-based linear control of nonlinear pneumatic soft bending actuators

0 Datasets

0 Files

en
2024
Vol 33 (4)
Vol. 33
DOI: 10.1088/1361-665x/ad315e

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Aiguo Song
Aiguo Song

Institution not specified

Verified
Jiajin Wang
Baoguo Xu
Jianwei Lai
+5 more

Abstract

Abstract Advanced model-based control techniques hold great promise for the precise control of pneumatic soft bending actuators (PSBAs) with strong nonlinearities. However, most previous controllers were designed in a cumbersome nonlinear form. Considering the simplicity of linear system theory, this paper presents a novel perspective on using model-based linear control to handle nonlinear PSBAs, and for the first time, summarizes two methodologies, global linearization and pseudo-linear construction. Derived from them, Koopman-based and hysteresis-based linear control approaches are proposed, respectively. For the former, a novel fusion prediction equation is developed to build a high-fidelity Koopman model, realizing global linearization, and then the linear model predictive control (MPC) is deployed. For the latter, the inverse of the generalized Prandtl–Ishlinskii (GPI) model cascades with the PSBA to construct a pseudo-linear system, eliminating the asymmetric hysteresis, which activates the linear proportional-integral-derivative (PID) control. It is worth noting that the above two are based on data-driven models adapted to various PSBAs with material and structural customization. Finally, the two model-based linear control approaches are verified and compared through a series of experiments. The results show that the proposed linear controls, with more concise designs, achieve comparable or even superior performance than nonlinear controls.

How to cite this publication

Jiajin Wang, Baoguo Xu, Jianwei Lai, Xin Wang, Ye Lu, Cong Hu, Huijun Li, Aiguo Song (2024). Model-based linear control of nonlinear pneumatic soft bending actuators. , 33(4), DOI: https://doi.org/10.1088/1361-665x/ad315e.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2024

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1088/1361-665x/ad315e

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access