Loading publications…
The last 5 uploaded publications
Reward Maximization Through Discrete Active Inference
Lancelot Da Costa, Noor Sajid, Thomas Parr, Karl Friston, Ryan Smith (2023). Reward Maximization Through Discrete Active Inference. , 35(5), DOI: https://doi.org/10.1162/neco_a_01574.
Article73 days agoA step-by-step tutorial on active inference and its application to empirical data
Ryan Smith, Karl Friston, Christopher J. Whyte (2022). A step-by-step tutorial on active inference and its application to empirical data. , 107, DOI: https://doi.org/10.1016/j.jmp.2021.102632.
Article73 days agoEditorial: Probabilistic Perspectives on Brain (Dys)function
Thomas Parr, Dimitrije Marković, Maxwell J. D. Ramstead, Ryan Smith, Casper Hesp, Karl Friston (2021). Editorial: Probabilistic Perspectives on Brain (Dys)function. , 4, DOI: https://doi.org/10.3389/frai.2021.710179.
Editorial material73 days agoA Step-by-Step Tutorial on Active Inference and its Application to Empirical Data
Ryan Smith, Karl Friston, Christopher J. Whyte (2021). A Step-by-Step Tutorial on Active Inference and its Application to Empirical Data. , DOI: https://doi.org/10.31234/osf.io/b4jm6.
Preprint73 days agoFrom generative models to generative passages: A computational approach to (neuro)phenomenology
Michael Lifshitz, Giuseppe Pagnoni, Ryan Smith, Guillaume Dumas, Antoine Lutz, Karl Friston, Axel Constant, Maxwell J. D. Ramstead, Anil K. Seth, Casper Hesp, Lars Sandved-Smith, Jonas Mago (2021). From generative models to generative passages: A computational approach to (neuro)phenomenology. , DOI: https://doi.org/10.31234/osf.io/k9pbn.
Preprint73 days ago