RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Reward Maximization Through Discrete Active Inference

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Reward Maximization Through Discrete Active Inference

0 Datasets

0 Files

en
2023
Vol 35 (5)
Vol. 35
DOI: 10.1162/neco_a_01574

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Karl Friston
Karl Friston

University College London

Verified
Lancelot Da Costa
Noor Sajid
Thomas Parr
+2 more

Abstract

Active inference is a probabilistic framework for modeling the behavior of biological and artificial agents, which derives from the principle of minimizing free energy. In recent years, this framework has been applied successfully to a variety of situations where the goal was to maximize reward, often offering comparable and sometimes superior performance to alternative approaches. In this article, we clarify the connection between reward maximization and active inference by demonstrating how and when active inference agents execute actions that are optimal for maximizing reward. Precisely, we show the conditions under which active inference produces the optimal solution to the Bellman equation, a formulation that underlies several approaches to model-based reinforcement learning and control. On partially observed Markov decision processes, the standard active inference scheme can produce Bellman optimal actions for planning horizons of 1 but not beyond. In contrast, a recently developed recursive active inference scheme (sophisticated inference) can produce Bellman optimal actions on any finite temporal horizon. We append the analysis with a discussion of the broader relationship between active inference and reinforcement learning.

How to cite this publication

Lancelot Da Costa, Noor Sajid, Thomas Parr, Karl Friston, Ryan Smith (2023). Reward Maximization Through Discrete Active Inference. , 35(5), DOI: https://doi.org/10.1162/neco_a_01574.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1162/neco_a_01574

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access