0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRobotic manipulators are nowadays widely used in various underwater scenarios, but their motion control remains a challenging task due to hydrodynamic effects. This article proposes a novel adaptive fuzzy sliding mode control (AFSMC) strategy for precise and robust control of underwater manipulators. To simulate the movement of the robotic manipulators in the underwater environment, the Unified Robot Description Format (URDF) file of a custom-designed electric underwater manipulator is imported into the Simscape Multibody and the hydrodynamic disturbance is modeled according to Morison’s equation. Furthermore, the proposed control strategy takes advantage of the universal approximation capability of fuzzy systems to avoid chattering and observe disturbances by adjusting the control gains of classical sliding mode control (CSMC). And adaptive laws are designed to update the parameters of the fuzzy systems. The strong friction caused by the seal is also compensated by actual test data. In the simulation experiments, a special environment of water flow and variable loads is considered. The results demonstrate that the AFSMC strategy can achieve high precision and strong robustness against disturbances for trajectory tracking. More importantly, the chattering caused by CSMC can be eliminated and the hydrodynamic disturbance can be estimated with high precision through the proposed control strategy.
Mingquan Zhang, Guangming Song, Juzheng Mao, Fei Wang, Jun Zhou, Aiguo Song (2023). Chattering suppression and hydrodynamic disturbance estimation of underwater manipulators using adaptive fuzzy sliding mode control. , 46(1), DOI: https://doi.org/10.1177/01423312231171212.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1177/01423312231171212
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access