RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Semantic stereo visual SLAM toward outdoor dynamic environments based on ORB-SLAM2

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Semantic stereo visual SLAM toward outdoor dynamic environments based on ORB-SLAM2

0 Datasets

0 Files

en
2023
Vol 50 (3)
Vol. 50
DOI: 10.1108/ir-09-2022-0236

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Aiguo Song
Aiguo Song

Institution not specified

Verified
Yawen Li
Guangming Song
Shuang Hao
+2 more

Abstract

Purpose The prerequisite for most traditional visual simultaneous localization and mapping (V-SLAM) algorithms is that most objects in the environment should be static or in low-speed locomotion. These algorithms rely on geometric information of the environment and restrict the application scenarios with dynamic objects. Semantic segmentation can be used to extract deep features from images to identify dynamic objects in the real world. Therefore, V-SLAM fused with semantic information can reduce the influence from dynamic objects and achieve higher accuracy. This paper aims to present a new semantic stereo V-SLAM method toward outdoor dynamic environments for more accurate pose estimation. Design/methodology/approach First, the Deeplabv3+ semantic segmentation model is adopted to recognize semantic information about dynamic objects in the outdoor scenes. Second, an approach that combines prior knowledge to determine the dynamic hierarchy of moveable objects is proposed, which depends on the pixel movement between frames. Finally, a semantic stereo V-SLAM based on ORB-SLAM2 to calculate accurate trajectory in dynamic environments is presented, which selects corresponding feature points on static regions and eliminates useless feature points on dynamic regions. Findings The proposed method is successfully verified on the public data set KITTI and ZED2 self-collected data set in the real world. The proposed V-SLAM system can extract the semantic information and track feature points steadily in dynamic environments. Absolute pose error and relative pose error are used to evaluate the feasibility of the proposed method. Experimental results show significant improvements in root mean square error and standard deviation error on both the KITTI data set and an unmanned aerial vehicle. That indicates this method can be effectively applied to outdoor environments. Originality/value The main contribution of this study is that a new semantic stereo V-SLAM method is proposed with greater robustness and stability, which reduces the impact of moving objects in dynamic scenes.

How to cite this publication

Yawen Li, Guangming Song, Shuang Hao, Juzheng Mao, Aiguo Song (2023). Semantic stereo visual SLAM toward outdoor dynamic environments based on ORB-SLAM2. , 50(3), DOI: https://doi.org/10.1108/ir-09-2022-0236.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1108/ir-09-2022-0236

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access