Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Phase Synchronization Information for Classifying Motor Imagery EEG From the Same Limb

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2019

Phase Synchronization Information for Classifying Motor Imagery EEG From the Same Limb

0 Datasets

0 Files

en
2019
Vol 7
Vol. 7
DOI: 10.1109/access.2019.2948676

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Aiguo Song
Aiguo Song

Institution not specified

Verified
Baoguo Xu
Zhiwei Wei
Aiguo Song
+6 more

Abstract

The classification of motor imagery Electroencephalogram (EEG) of the same limb is important for natural control of neuroprosthesis. Due to the close spatial representations on the motor cortex area of the brain, the discrimination of the different motor imagery tasks is challenging. In this paper, phase synchronization information was proposed to classify motor imagery EEG within the same limb. In addition, non-portable was compared with portable EEG acquisition equipment for the purpose of making the brain computer interface (BCI) system more practical. In the non-portable case, the average accuracy of the binary classification and 3-class classification was 60.6% and 42.7%. In the portable case, the average EEG decoding accuracy of 58.5% and 39.9% was achieved for the two and three tasks. Furthermore, in both two cases, different sets of electrode pairs got the similar results. Moreover, we found that the proposed phase information based method was less sensitive to the number of EEG channels and had less performance degradation in portable EEG equipment. These results show it is possible to use phase synchronization information to discriminate different motor imagery tasks within the same limb. Eventually, this will potentially make the control of neuroprosthesis or other rehabilitation device more natural and intuitive.

How to cite this publication

Baoguo Xu, Zhiwei Wei, Aiguo Song, Changcheng Wu, Dalin Zhang, Wenlong Li, Guozheng Xu, Huijun Li, Hong Zeng (2019). Phase Synchronization Information for Classifying Motor Imagery EEG From the Same Limb. , 7, DOI: https://doi.org/10.1109/access.2019.2948676.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

9

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/access.2019.2948676

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access