0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAlthough many soft robots, capable of crawling or climbing, have been well developed, integrating multimodal locomotion into a soft robot for transitioning between crawling and climbing still remains elusive. In this work, we present a class of inchworm-inspired multimodal soft crawling-climbing robots (SCCRs) that can achieve crawling, climbing, and transitioning between horizontal and vertical planes. Inspired by the inchworm's multimodal locomotion, which depends on the " <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\Omega$</tex-math></inline-formula> " deformation of the body and controllable friction force of feet, we develop the SCCR by 1) three pneumatic artificial muscles based body designed to produce " <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\Omega$</tex-math></inline-formula> " deformation; 2) two negative pressure suckers adopted to generate controllable friction forces. Then a simplified kinematic model is developed to characterize the kinematic features of the SCCRs. Lastly, a control strategy is proposed to synchronously control the " <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"><tex-math notation="LaTeX">$\Omega$</tex-math></inline-formula> " deformation and sucker friction forces for multimodal locomotion. The experimental results demonstrate that the SCCR can move at a maximum speed of 21 mm/s (0.11 body length/s) on horizontal planes and 15 mm/s (0.079 body length/s) on vertical walls. Furthermore, the SCCR can work in confined spaces, carry a payload of 500 g (about 15 times the self-weight) on horizontal planes or 20 g on vertical walls, and move in aquatic environments.
Yifan Zhang, Dezhi Yang, Peinan Yan, Peiwei Zhou, Jiang Zou, Guoying Gu (2021). Inchworm Inspired Multimodal Soft Robots With Crawling, Climbing, and Transitioning Locomotion. IEEE Transactions on Robotics, 38(3), pp. 1806-1819, DOI: 10.1109/tro.2021.3115257.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Robotics
DOI
10.1109/tro.2021.3115257
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access