0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMulti-chamber soft pneumatic actuators (m-SPAs) have been widely used in soft robotic systems to achieve versatile grasping and locomotion. However, existing m-SPAs have slow actuation speed and are either limited by a finite air supply or require energy-consuming hardware to continuously supply compressed air. Here, we address these shortcomings by introducing an internal exhaust air recirculation (IEAR) mechanism for high-speed and low-energy actuation of m-SPAs. This mechanism recirculates the exhaust compressed air and recovers the energy by harnessing the rhythmic actuation of multiple chambers. We develop a theoretical model to guide the analysis of the IEAR mechanism, which agrees well with the experimental results. Comparative experimental results of several sets of m-SPAs show that our IEAR mechanism significantly improves the actuation speed by more than 82.4% and reduces the energy consumption per cycle by more than 47.7% under typical conditions. We further demonstrate the promising applications of the IEAR mechanism in various pneumatic soft machines and robots such as a robotic fin, fabric-based finger, and quadruped robot. Corresponding author(s) Email: guguoying@sjtu.edu.cn
Miao Feng, Dezhi Yang, Carmel Majidi, Guoying Gu (2022). High-speed and Low-energy Actuation for Pneumatic Soft Robots With Internal Exhaust Air Recirculation . Authorea (Authorea), DOI: 10.22541/au.166428178.80668101/v1.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2022
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Authorea (Authorea)
DOI
10.22541/au.166428178.80668101/v1
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access