0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessBrain-computer interfaces (BCIs) have achieved successful control of assistive devices, e.g. neuroprosthesis or robotic arm. Previous research based on hand movements Electroencephalogram (EEG) has shown limited success in precise and natural control. In this study, we explored the possibilities of decoding movement types and kinematic information for three reach-and-execute actions using movement-related cortical potentials (MRCPs). EEG signals were acquired from 12 healthy subjects during the execution of pinch, palmar and precision disk rotation actions that involved two levels of speeds and forces. In the case of discrimination between hand movement types under each of four different kinematics conditions, we obtained the average peak accuracies of 83.44% and 73.83% for the binary and 3-class classification, respectively. In the case of discrimination between different movement kinematics for each of three actions, the average peak accuracies of 82.9% and 58.2% could be achieved for the two and 4-class scenario. In both cases, peak decoding performance was significantly higher than the subject-specific chance level. We found that hand movement types all could be classified when these actions were executed at four different kinematic parameters. Meanwhile, for each of three hand movements, we decoded movement parameters successfully. Furthermore, the feasibility of decoding hand movements during hand retraction process was also demonstrated. These findings are of great importance for controlling neuroprosthesis or other rehabilitation devices in a fine and natural way, which would drastically increase the acceptance of motor impaired users.
Baoguo Xu, Yong Wang, Leying Deng, Changcheng Wu, Wenbin Zhang, Huijun Li, Aiguo Song (2021). Decoding Hand Movement Types and Kinematic Information From Electroencephalogram. , 29, DOI: https://doi.org/10.1109/tnsre.2021.3106897.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/tnsre.2021.3106897
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access