RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Automatic Design of Soft Dielectric Elastomer Actuators With Optimal Spatial Electric Fields

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Automatic Design of Soft Dielectric Elastomer Actuators With Optimal Spatial Electric Fields

0 Datasets

0 Files

English
2019
IEEE Transactions on Robotics
Vol 35 (5)
DOI: 10.1109/tro.2019.2920108

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guoying Gu
Guoying Gu

Shanghai Jiao Tong University

Verified
Feifei Chen
Kun Liu
Yiqiang Wang
+3 more

Abstract

Dielectric elastomer actuators (DEAs) are a promising actuation technology in soft robotics owing to their large voltage-induced deformation and rapid response. However, most existing DEA design paradigms are empirical or intuitive, lacking the mathematical modeling and optimization methodology to exploit their actuation capabilities for prescribed motion tasks. In this paper, we present an automatic design methodology to maximize the concerned displacement(s) of DEAs by topology optimization of the applied spatial electric fields (SEFs). Our method is enabled by integrating the freeform SEF profile captured by implicit level sets, and the constitutive model of DEAs incorporating geometric and material nonlinearities and the electromechanical coupling effect, into a gradient-based optimizer. We implement our method for motions of single and multiple degrees of freedom (DOFs) of planar DEAs, and the optimized SEFs have been found to improve the output displacements by more than 75% compared with their intuitive counterparts. We further demonstrate a proof-of-concept application in which our designed two-DOF DEAs can actively drive various host structures to shape-morph from flat sheets to desired three dimensional configurations. Overall, our paper represents the first step toward automatic design of soft DEAs for diverse potential applications in soft machines and robots.

How to cite this publication

Feifei Chen, Kun Liu, Yiqiang Wang, Jiang Zou, Guoying Gu, Xiangyang Zhu (2019). Automatic Design of Soft Dielectric Elastomer Actuators With Optimal Spatial Electric Fields. IEEE Transactions on Robotics, 35(5), pp. 1150-1165, DOI: 10.1109/tro.2019.2920108.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

IEEE Transactions on Robotics

DOI

10.1109/tro.2019.2920108

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access