0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessDielectric elastomer actuators (DEAs) are a promising actuation technology in soft robotics owing to their large voltage-induced deformation and rapid response. However, most existing DEA design paradigms are empirical or intuitive, lacking the mathematical modeling and optimization methodology to exploit their actuation capabilities for prescribed motion tasks. In this paper, we present an automatic design methodology to maximize the concerned displacement(s) of DEAs by topology optimization of the applied spatial electric fields (SEFs). Our method is enabled by integrating the freeform SEF profile captured by implicit level sets, and the constitutive model of DEAs incorporating geometric and material nonlinearities and the electromechanical coupling effect, into a gradient-based optimizer. We implement our method for motions of single and multiple degrees of freedom (DOFs) of planar DEAs, and the optimized SEFs have been found to improve the output displacements by more than 75% compared with their intuitive counterparts. We further demonstrate a proof-of-concept application in which our designed two-DOF DEAs can actively drive various host structures to shape-morph from flat sheets to desired three dimensional configurations. Overall, our paper represents the first step toward automatic design of soft DEAs for diverse potential applications in soft machines and robots.
Feifei Chen, Kun Liu, Yiqiang Wang, Jiang Zou, Guoying Gu, Xiangyang Zhu (2019). Automatic Design of Soft Dielectric Elastomer Actuators With Optimal Spatial Electric Fields. IEEE Transactions on Robotics, 35(5), pp. 1150-1165, DOI: 10.1109/tro.2019.2920108.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Robotics
DOI
10.1109/tro.2019.2920108
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access