Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. 668 A toolkit for the quantitative analysis of the spatial distribution of cells of the tumor immune microenvironment

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

668 A toolkit for the quantitative analysis of the spatial distribution of cells of the tumor immune microenvironment

0 Datasets

0 Files

en
2020
DOI: 10.1136/jitc-2020-sitc2020.0668

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Shahneen Sandhu
Shahneen Sandhu

Institution not specified

Verified
Anna Trigos
Tianpei Yang
Yuzhou Feng
+12 more

Abstract

Background

Spatial technologies that query the location of cells in tissues such as multiplex immunohistochemistry and spatial transcriptomics are gaining popularity and are likely to become commonplace. The resulting data often includes the X, Y coordinates of millions of cells, cell phenotypes and marker or gene expression levels. In cancer, the spatial location of lymphocytes has been linked to prognosis and response to immunotherapy. While these advances have been exciting for the field, the methods currently being used are still coarse, making us severely underpowered in our ability to extract quantifiable information. Appropriate quantitative tools are desperately needed to refine and uncover novel biologically and clinically meaningful insights from the spatial distribution of cells of the tumor immune microenvironment.

Methods

We compiled over 60 prostate cancer and melanoma FFPE tumor sections and performed Opal multiplex immunohistochemistry for a diversity of T-cell and other immune markers, including CD3, CD4, CD8, FOXP3 and PDL1, as well as a prostate cancer (AMACR) or melanoma (SOX10) marker and DAPI. Following spectral imaging on the Vectra Polaris, we performed cell and tissue segmentation and phenotyping with the inForm or HALO image analysis software. The detected X, Y coordinates of cells and marker intensities were used for subsequent method development.

Results

We developed SPIAT (Spatial Image Analysis of Tissues)1, an R package with a suite of data processing, quality control, visualization, data handling and data analysis tools for spatial data. SPIAT includes our novel algorithms for the identification of cell clusters, tumor margins and cell gradients, the calculation of neighborhood proportions and algorithms for the prediction of cell phenotypes. By interfacing with packages used in ecology, geographic data analysis and spatial statistics, we have begun to robustly address fundamental questions in the analysis of cell spatial data, such as metrics to measure mixing between cell types, the identification of tumor borders and statistical approaches to compare samples.

Conclusions

SPIAT is compatible with multiplex immunohistochemistry, spatial transcriptomics and data generated from other spatial platforms, and continues to be actively developed. We expect SPIAT to become a user-friendly and speedy go-to package for the spatial analysis of cells in tissues, as well as promote the use of quantitative metrics in the spatial analysis of the tumor immune microenvironment.

Reference

Tianpei Yang, Volkan Ozcoban, Anu Pasam, Nikolce Kocovski, Angela Pizzolla, Yu-Kuan Huang, Greg Bass, Simon P. Keam, Paul J. Neeson, Shahneen K. Sandhu, David L. Goode, Anna S. Trigos. SPIAT: An R package for the Spatial Image Analysis of Cells in Tissues. BioRxiv doi: https://doi.org/10.1101/2020.05.28.122614

How to cite this publication

Anna Trigos, Tianpei Yang, Yuzhou Feng, Volkan Ozcoban, Maria Doyle, Anu Pasam, Nikolce Kocovski, Angela Pizzolla, Yu‐Kuan Huang, Greg Bass, Simon P. Keam, Terrence Speed, Paul J. Neeson, Shahneen Sandhu, David L. Goode (2020). 668 A toolkit for the quantitative analysis of the spatial distribution of cells of the tumor immune microenvironment. , DOI: https://doi.org/10.1136/jitc-2020-sitc2020.0668.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

15

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1136/jitc-2020-sitc2020.0668

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access