0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract RNA interference (RNAi) is a gene-silencing pathway that can play roles in viral defense, transposon silencing, heterochromatin formation, and post-transcriptional gene silencing. Although absent from Saccharomyces cerevisiae , RNAi is present in other budding-yeast species, including Naumovozyma castellii , which have an unusual Dicer and a conventional Argonaute that are both required for gene silencing. To identify other factors that act in the budding-yeast pathway, we performed an unbiased genetic selection. This selection identified Xrn1p, the cytoplasmic 5′-to-3′ exoribonuclease, as a cofactor of RNAi in budding yeast. Deletion of XRN1 impaired gene silencing in N. castellii , and this impaired silencing was attributable to multiple functions of Xrn1p, including affecting the composition of siRNA species in the cell, influencing the efficiency of siRNA loading into Argonaute, degradation of cleaved passenger strand, and degradation of sliced target RNA.
Matthew A. Getz, David E. Weinberg, Ines A. Drinnenberg, Gerald R. Fink, David Bartel (2019). Xrn1p Acts at Multiple Steps in the Budding-Yeast RNAi Pathway to Enhance the Efficiency of Silencing. , DOI: https://doi.org/10.1101/2019.12.12.873604.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2019
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1101/2019.12.12.873604
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access