0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWetting of dehydrated Pseudomonas fluorescens biofilms grown on glass substrates by an external liquid is employed as a means to investigate the complex morphology of these biofilms along with their capability to interact with external fluids. The porous structure left behind after dehydration induces interesting droplet spreading on the external surface and imbibition into pores upon wetting. Static contact angles and volume loss by imbibition measured right upon droplet deposition indicate that biofilms of higher incubation times show a higher porosity and effective hydrophilicity. Furthermore, during subsequent rotation tests, using Kerberos device, these properties dictate a peculiar forced wetting/spreading behavior. As rotation speed increases a long liquid tail forms progressively at the rear part of the droplet, which stays pinned at all times, while only the front part of the droplet depins and spreads. Interestingly, the experimentally determined retention force for the onset of droplet sliding on biofilm external surface is lower than that on pure glass. An effort is made to describe such complex forced wetting phenomena by presenting apparent contact angles, droplet length, droplet shape contours, and edges position as obtained from detailed image analysis.
Michela Castigliano, Federica Recupido, Maria Petala, Margaritis Kostoglou, Sergio Caserta, Thodoris D. Karapantsios (2021). Wetting of Dehydrated Hydrophilic <i>Pseudomonas fluorescens</i> Biofilms under the Action of External Body Forces. , 37(37), DOI: https://doi.org/10.1021/acs.langmuir.1c00528.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acs.langmuir.1c00528
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access