0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWave propagation analysis of porous functionally graded (FG) sandwich plate in a hygro-thermal environment is presented in this paper. The sandwich plates’ composing materials change through three layers that are either homogeneous ceramic, homogeneous metal, or power-law-based functionally graded ceramic–metal. Six different porosity models are considered in the analysis to express the porosities’ distribution factor and uniformity. The study is conducted using a simple four-unknown integral higher-order shear deformation theory (HSDT). The effect of moisture and temperature on wave propagation in porous FG sandwich plates is investigated by considering their role on the materials’ expansion. The governing equations are derived for the wave propagation problem based on the presented theory via Hamilton’s principle. A generalized solution for wave propagation is applied to formulate the stiffness and mass matrix that describes the dispersion relations. The numerical results are obtained by solving an eigenvalue problem. The effects of core-to-thickness ratio, FGM power index, porosity volume fraction, temperature, and moisture change are illustrated and discussed. The presented results can be utilized as a benchmark for further studies on wave propagation in FGM plates.
Saeed I. Tahir, Abdelbaki Chikh, Abdelouahed Tounsi, Mohammed Al-osta, Salah U. Al‐Dulaijan, Mesfer M. Al‐Zahrani (2021). Wave propagation analysis of a ceramic-metal functionally graded sandwich plate with different porosity distributions in a hygro-thermal environment. Composite Structures, 269, pp. 114030-114030, DOI: 10.1016/j.compstruct.2021.114030.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Composite Structures
DOI
10.1016/j.compstruct.2021.114030
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access