0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessVibration is an omnipresent energy source that is renewable and has the potential to cause damage to transmission lines. Harvesting harmful vibration energy can achieve vibration attenuation. Here, a vibration-driven triboelectric nanogenerator (V-TENG) with the potential for vibration attenuation is proposed as a power source for monitoring the operating condition of transmission lines. The V-TENG with structural optimization and frequency response range improvement is first discussed, indicating that it has a simple structural design with a good output performance. Then an energy management circuit is used to improve the charging efficiency of large capacitors. The vibration attenuation effect and wireless transmission system are verified in the simulation environment, benefiting from the well-designed structure and outstanding electric performance. This work demonstrates an efficient strategy for harvesting vibration energy through the TENG, which provides valuable guidance for further construction of online monitoring of transmission lines.
Shuangting Hu, Zhihao Yuan, Ruonan Li, Zhi Cao, Hanlin Zhou, Zhiyi Wu, Zhong Lin Wang (2022). Vibration-Driven Triboelectric Nanogenerator for Vibration Attenuation and Condition Monitoring for Transmission Lines. , 22(13), DOI: https://doi.org/10.1021/acs.nanolett.2c01912.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acs.nanolett.2c01912
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access