RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Variational free energy and the Laplace approximation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2006

Variational free energy and the Laplace approximation

0 Datasets

0 Files

English
2006
NeuroImage
Vol 34 (1)
DOI: 10.1016/j.neuroimage.2006.08.035

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Karl Friston
Karl Friston

University College London

Verified
Karl Friston
Jérémie Mattout
Nelson J. Trujillo‐Barreto
+2 more

Abstract

This note derives the variational free energy under the Laplace approximation, with a focus on accounting for additional model complexity induced by increasing the number of model parameters. This is relevant when using the free energy as an approximation to the log-evidence in Bayesian model averaging and selection. By setting restricted maximum likelihood (ReML) in the larger context of variational learning and expectation maximisation (EM), we show how the ReML objective function can be adjusted to provide an approximation to the log-evidence for a particular model. This means ReML can be used for model selection, specifically to select or compare models with different covariance components. This is useful in the context of hierarchical models because it enables a principled selection of priors that, under simple hyperpriors, can be used for automatic model selection and relevance determination (ARD). Deriving the ReML objective function, from basic variational principles, discloses the simple relationships among Variational Bayes, EM and ReML. Furthermore, we show that EM is formally identical to a full variational treatment when the precisions are linear in the hyperparameters. Finally, we also consider, briefly, dynamic models and how these inform the regularisation of free energy ascent schemes, like EM and ReML.

How to cite this publication

Karl Friston, Jérémie Mattout, Nelson J. Trujillo‐Barreto, John Ashburner, W.D. Penny (2006). Variational free energy and the Laplace approximation. NeuroImage, 34(1), pp. 220-234, DOI: 10.1016/j.neuroimage.2006.08.035.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2006

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

NeuroImage

DOI

10.1016/j.neuroimage.2006.08.035

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access