RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Valley charge-transfer insulator in twisted double bilayer WSe2

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2025

Valley charge-transfer insulator in twisted double bilayer WSe2

0 Datasets

0 Files

English
2025
Nature Communications
Vol 16 (1)
DOI: 10.1038/s41467-025-56490-w

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Konstantin ‘kostya’  Novoselov
Konstantin ‘kostya’ Novoselov

The University of Manchester

Verified
LingNan Wei
Qingxin Li
Majeed Ur Rehman
+13 more

Abstract

In flat-band systems, emergent physics can be substantially modified by the presence of another nearby electronic band. For example, a Mott˘Hubbard insulator can turn into a charge transfer insulator if other electronic states enter between the upper and lower Hubbard bands. Here, we introduce twisted double bilayer (TDB) WSe2, with twist angles near 60°, as a controllable platform in which the K-valley band can be tuned to close vicinity of the Γ-valley moiré flat band. At half-filling, correlations split the Γ-valley flat band into upper and lower Hubbard bands and a charge-transfer insulator forms between the Γ-valley upper Hubbard band and K-valley band. Using gate control, we continuously move the K-valley band across the Γ-valley Hubbard bands, and observe a tunable charge-transfer insulator gap and subsequently a continuous phase transition to a metal. The tuning of Mott˘Hubbard to charge-transfer insulator establishes valley degree of freedom as a suitable knob for transitions between exotic correlated phases. Γ and K valleys in twisted transition metal dichalcogenides have emerged as highly tunable knobs for accessing different correlated electronic states in solid-state devices. Here, the authors tune a Mott-Hubbard state to a charge-transfer insulator state in twisted double-bilayer WSe2.

How to cite this publication

LingNan Wei, Qingxin Li, Majeed Ur Rehman, Yangchen He, Dongdong An, Shiwei Li, Kenji Watanabe, Takashi Taniguchi, Martin Claassen, Konstantin ‘kostya’ Novoselov, Dante M. Kennes, Ángel Rubio, Daniel Rhodes, Lede Xian, Geliang Yu, Lei Wang (2025). Valley charge-transfer insulator in twisted double bilayer WSe2. Nature Communications, 16(1), DOI: 10.1038/s41467-025-56490-w.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

16

Datasets

0

Total Files

0

Language

English

Journal

Nature Communications

DOI

10.1038/s41467-025-56490-w

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access