0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn the present work, we analyze the geometry and composition of the nanostructures obtained from the oxidation of iron nanoparticles. The initial oxidation of iron takes place by outward diffusion of cations through the growing oxide shell. This net material flow is balanced by an opposite flow of vacancies, which coalesce at the metal/oxide interface. Thus, the partial oxidation of colloidal iron nanoparticles leads to the formation of core−void−shell nanostructures. Furthermore, the complete oxidation of iron nanoparticles in the 3−8 nm size range leads to the formation of hollow iron oxide nanoparticles. We analyze the size and temperature range in which vacancy coalescence during oxidation of amine-stabilized iron nanoparticles takes place. Maghemite is the crystallographic structure obtained from the complete oxidation of iron nanoparticles under our synthetic conditions.
Andreu Cabot, Víctor Puntes, Elena V. Shevchenko, Yadong Yin, Ll. Balcells, Matthew A. Marcus, Steven M. Hughes, Paul Alivisatos (2007). Vacancy Coalescence during Oxidation of Iron Nanoparticles. , 129(34), DOI: https://doi.org/10.1021/ja072574a.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2007
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/ja072574a
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access