0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe positioning accuracy of UWB-based mobile Internet of Things (IoT) devices is frequently impacted by the complicated indoor environment, which is a common application for automated following mobile IoT devices. To address the issue of abnormal value errors such as high noise and UWB jitter value when tracking and locating mobile IoT devices in complicated indoor environments, this paper proposes to use a hybrid filtering weighted following algorithm based on UWB, which combines the benefits and drawbacks of Gaussian, median, and average filtering techniques, introduces the residual value of ranging, and combines geometric positioning to determine the ideal following value. The experimental results show that the proposed algorithm can effectively filter out the UWB error under multi-factor interference and finally estimate the UWB value closest to the actual value, thereby improving the stability and sensitivity of the following process and obtaining a better follow effect.
Boliang Zhang, Lu Shen, Jiahua Yao, Su-Kit Tang, Silvia Mirri (2023). UWB Hybrid Filtering-Based Mobile IoT Device Tracking. , DOI: 10.1145/3582515.3609569.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
5
Datasets
0
Total Files
0
Language
English
DOI
10.1145/3582515.3609569
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access