0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessGraphene oxide/carboxylated acrylonitrile butadiene rubber (GO/XNBR) nanocomposites with high mechanical and gas barrier properties were fabricated by using a simple and environment-friendly latex co-coagulation method. The oxygen-containing groups attached to the surface of GO generate strong interactions with the XNBR chains through hydrogen bonding (H-bonding), as confirmed by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimeter (DSC) results. The morphology of the nanocomposites was characterized by high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD), which show highly exfoliated and uniform dispersion of GO sheets in the matrix. The tensile strength and tear strength of the nanocomposite with 1.9vol% of GO increased by 357% and 117%, respectively, over those of the matrix. The gas permeability of the nanocomposite is significantly lower than that of the matrix. The high mechanical properties and low gas permeability of the nanocomposite are correlated to the homogeneous dispersion of the GO sheets and strong interfacial interactions, which facilitate the load transfer from XNBR to the GO sheets.
Hailan Kang, Kanghua Zuo, Zhao Wang, Liqun Zhang, Li Liu, Guo Baochun (2013). Using a green method to develop graphene oxide/elastomers nanocomposites with combination of high barrier and mechanical performance. Composites Science and Technology, 92, pp. 1-8, DOI: 10.1016/j.compscitech.2013.12.004.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Composites Science and Technology
DOI
10.1016/j.compscitech.2013.12.004
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access