0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSoil bacterial and fungal communities play fundamental roles in biogeochemical cycles and ecosystem stability. Urbanization alters soil properties and microbial habitats, driving shifts in community composition, yet the divergent responses of bacteria and fungi and their ecological consequences remain inadequately understood. To elucidate these differential responses, we investigated soil bacterial and fungal communities along an urbanization gradient, ranging from undisturbed reference forests to urban parks, across three distinct climatic regions. To capture different disturbance intensities, urban parks were classified by tree age into old parks (>60-year-old trees) and young parks (10–20-year-old trees). Climate had a strong influence on soil microbiota, yet urbanization still significantly altered both bacterial and fungal communities in all regions. Urban disturbances homogenized soil microbial communities: average similarity among bacterial communities increased from ∼79 % in forests to ∼85 % in young urban parks, indicating substantial homogenization, whereas fungal communities showed little homogenization. Urbanization also homogenized microbial functional traits, with a greater reduction in trait dissimilarity for bacteria than for fungi. Bacterial communities exhibited high adjustability to urban conditions, dominated by generalist taxa (∼90 %), whereas fungal communities consisted mostly of specialists (∼83 %). Despite these asynchronous responses—bacteria adjusting and homogenizing more than fungi—overlapping functional traits between bacteria and fungi help maintain functional resilience in urban ecosystems.
Bang-Xiao Zheng, Nan Hui, Ari Jumpponen, Changyi Lu, Richard V. Pouyat, Katalin Szlávecz, David A. Wardle, Ian D. Yesilonis, Heikki Setälä, D. Johan Kotze (2025). Urbanization leads to asynchronous homogenization of soil microbial communities across biomes. Environmental Science and Ecotechnology, pp. 100547-100547, DOI: 10.1016/j.ese.2025.100547.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Environmental Science and Ecotechnology
DOI
10.1016/j.ese.2025.100547
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access