RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Understanding the piezoelectric response of ZnO nanotetrapods: Detailed numerical calculations

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Understanding the piezoelectric response of ZnO nanotetrapods: Detailed numerical calculations

0 Datasets

0 Files

en
2023
Vol 123 (2)
Vol. 123
DOI: 10.1063/5.0154454

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Z. Zhang
Nan Yang
Yogendra Kumar Mishra
+2 more

Abstract

The complex tetrapod shape of zinc oxide nanostructure, which is constructed from four one-dimensional arms interconnected together via a central core, is a special 3D geometry with multifunctional applications in advanced technologies. The ZnO hexagonal wurtzite crystal lattice with a non-centrosymmetric structure introduces interesting piezoelectric property in nanorods in the bent state, which has been well reported and utilized in piezo- and tribo-electric nanogenerator applications. Considering the broad technological relevance of tetrapods, it is important to understand the piezoelectric response of zinc oxide tetrapods under different conditions. In this study, we explicate the fundamental mechanical and electrical properties of ZnO nanotetrapods (ZnO NTs) through a detailed finite element method analysis. On this basis, the effects of shape factors (including length, height, and aspect ratio) as well as connection strength and packing density on the deformation and piezoelectric potential of ZnO NTs are examined, offering guidance for the fabrication of ZnO NTs. This theoretical model and numerical simulation provide an avenue for further piezoelectric and piezotronic research of ZnO NTs.

How to cite this publication

Z. Zhang, Nan Yang, Yogendra Kumar Mishra, Morten Willatzen, Zhong Lin Wang (2023). Understanding the piezoelectric response of ZnO nanotetrapods: Detailed numerical calculations. , 123(2), DOI: https://doi.org/10.1063/5.0154454.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

5

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1063/5.0154454

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access