0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract The patient‐centered healthcare requires timely disease diagnosis and prognostic assessment, calling for individualized physiological monitoring. To assess the postoperative hemodynamic status of patients, implantable blood flow monitoring devices are highly expected to deliver real time, long‐term, sensitive, and reliable hemodynamic signals, which can accurately reflect multiple physiological conditions. Herein, an implantable and unconstrained vascular electronic system based on a piezoelectric sensor immobilized is presented by a “growable” sheath around continuously growing arterial vessels for real‐timely and wirelessly monitoring of hemodynamics. The piezoelectric sensor made of circumferentially aligned polyvinylidene fluoride nanofibers around pulsating artery can sensitively perceive mechanical signals, and the growable sheath bioinspired by the structure and function of leaf sheath has elasticity and conformal shape adaptive to the dynamically growing arterial vessels to avoid growth constriction. With this integrated and smart design, long‐term, wireless, and sensitive monitoring of hemodynamics are achieved and demonstrated in rats and rabbits. It provides a simple and versatile strategy for designing implantable sensors in a less invasive way.
Chuyu Tang, Zhirong Liu, Quanhong Hu, Zhuoheng Jiang, Mingjia Zheng, Cheng Xiong, Shaobo Wang, Shuncheng Yao, Yunchao Zhao, Xingyi Wan, Guanlin Liu, Qijun Sun, Zhong Lin Wang, Linlin Li (2023). Unconstrained Piezoelectric Vascular Electronics for Wireless Monitoring of Hemodynamics and Cardiovascular Health. , 20(3), DOI: https://doi.org/10.1002/smll.202304752.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
14
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/smll.202304752
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access