Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Uncertainty Handling in Structural Damage Detection via Non-Probabilistic Meta-Models and Interval Mathematics, a Data-Analytics Approach

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Uncertainty Handling in Structural Damage Detection via Non-Probabilistic Meta-Models and Interval Mathematics, a Data-Analytics Approach

0 Datasets

0 Files

English
2021
Applied Sciences
Vol 11 (2)
DOI: 10.3390/app11020770

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Wael A. Altabey
Wael A. Altabey

Alexandria University

Verified
Ramin Ghiasi
Mohammad Noori
Wael A. Altabey
+3 more

Abstract

Recent advancements in sensor technology have resulted in the collection of massive amounts of measured data from the structures that are being monitored. However, these data include inherent measurement errors that often cause the assessment of quantitative damage to be ill-conditioned. Attempts to incorporate a probabilistic method into a model have provided promising solutions to this problem by considering the uncertainties as random variables, mostly modeled with Gaussian probability distribution. However, the success of probabilistic methods is limited due the lack of adequate information required to obtain an unbiased probabilistic distribution of uncertainties. Moreover, the probabilistic surrogate models involve complicated and expensive computations, especially when generating output data. In this study, a non-probabilistic surrogate model based on wavelet weighted least squares support vector machine (WWLS-SVM) is proposed to address the problem of uncertainty in vibration-based damage detection. The input data for WWLS-SVM consists of selected wavelet packet decomposition (WPD) features of the structural response signals, and the output is the Young’s modulus of structural elements. This method calculates the changes in the lower and upper boundaries of Young’s modulus based on an interval analysis method. Considering the uncertainties in the input parameters, the surrogate model is used to predict this interval-bound output. The proposed approach is applied to detect simulated damage in the four-story benchmark structure of the IASC-ASCE SHM group. The results show that the performance of the proposed method is superior to that of the direct finite element model in the uncertainty-based damage detection of structures and requires less computational effort.

How to cite this publication

Ramin Ghiasi, Mohammad Noori, Wael A. Altabey, Ahmed Silik, Tianyu Wang, Zhishen Wu (2021). Uncertainty Handling in Structural Damage Detection via Non-Probabilistic Meta-Models and Interval Mathematics, a Data-Analytics Approach. Applied Sciences, 11(2), pp. 770-770, DOI: 10.3390/app11020770.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Applied Sciences

DOI

10.3390/app11020770

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access