0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUltrathin piezoelectric nanogenerator (NG) with a total thickness of ≈16 μm is fabricated as an active or self‐powered sensor for monitoring local deformation on a human skin. The NG was based on an anodic aluminum oxide (AAO) as an insulating layer grown on a thin Al foil by anodization, on which a thin film made of aligned ZnO nanowire compacted arrays is grown by solution chemistry. The performance of the NG is characterized with the assistance of the finite element method (FEM) simulation. The extremely thin NG is attached on the surface of an eyelid, and its output voltage/current characterizes the motion of the eye ball underneath. Since there is no external power needed for the operation of the NG, this self‐powered or active sensor can be effective in monitoring sleeping behavior, brain activities, and spirit status of a person as well as any biological associated skin deformation.
Sangmin Lee, Ronan Hinchet, Yean Lee, Ya Yang, Zong‐Hong Lin, Gustavo Ardila, L. Montès, M. Mouis, Zhong Lin Wang (2013). Ultrathin Nanogenerators as Self‐Powered/Active Skin Sensors for Tracking Eye Ball Motion. , 24(8), DOI: https://doi.org/10.1002/adfm.201301971.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.201301971
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access