0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHigh-performance refractory alloys with ultrahigh strength and ductility are in demand for a wide range of critical applications, such as plasma-facing components. However, it remains challenging to increase the strength of these alloys without seriously compromising their tensile ductility. Here, we put forward a strategy to "defeat" this trade-off in tungsten refractory high-entropy alloys by stepwise controllable coherent nanoprecipitations (SCCPs). The coherent interfaces of SCCPs facilitate the dislocation transmission and relieve the stress concentrations that can lead to premature crack initiation. As a consequence, our alloy displays an ultrahigh strength of 2.15 GPa with a tensile ductility of 15% at ambient temperature, with a high yield strength of 1.05 GPa at 800 °C. The SCCPs design concept may afford a means to develop a wide range of ultrahigh-strength metallic materials by providing a pathway for alloy design.
Tong Li, Tianwei Liu, Shiteng Zhao, Yan Chen, Junhua Luan, Zengbao Jiao, Robert O. Ritchie, L.H. Dai (2023). Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations. Nature Communications, 14(1), DOI: 10.1038/s41467-023-38531-4.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Nature Communications
DOI
10.1038/s41467-023-38531-4
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access