RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Ultra Dense Small Cell Networks: Turning Density Into Energy Efficiency

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2016

Ultra Dense Small Cell Networks: Turning Density Into Energy Efficiency

0 Datasets

0 Files

$0 Value

English
2016
IEEE Journal on Selected Areas in Communications
Vol 34 (5)
DOI: 10.1109/jsac.2016.2545539

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
Matti Latva-aho
Matti Latva-aho

University Of Oulu

Verified
Sumudu Samarakoon
Mehdi Bennis
Walid Saad
+2 more

Abstract

In this paper, a novel approach for joint power control and user scheduling is proposed for optimizing energy efficiency (EE), in terms of bits per unit energy, in ultra dense small cell networks (UDNs). Due to severe coupling in interference, this problem is formulated as a dynamic stochastic game (DSG) between small cell base stations (SBSs). This game enables to capture the dynamics of both the queues and channel states of the system. To solve this game, assuming a large homogeneous UDN deployment, the problem is cast as a mean-field game (MFG) in which the MFG equilibrium is analyzed with the aid of low-complexity tractable partial differential equations. Exploiting the stochastic nature of the problem, user scheduling is formulated as a stochastic optimization problem and solved using the drift plus penalty (DPP) approach in the framework of Lyapunov optimization. Remarkably, it is shown that by weaving notions from Lyapunov optimization and mean-field theory, the proposed solution yields an equilibrium control policy per SBS which maximizes the network utility while ensuring users' quality-of-service. Simulation results show that the proposed approach achieves up to 70.7% gains in EE and 99.5% reductions in the network's outage probabilities compared to a baseline model which focuses on improving EE while attempting to satisfy the users' instantaneous quality-of-service requirements.

How to cite this publication

Sumudu Samarakoon, Mehdi Bennis, Walid Saad, Mérouane Debbah, Matti Latva-aho (2016). Ultra Dense Small Cell Networks: Turning Density Into Energy Efficiency. IEEE Journal on Selected Areas in Communications, 34(5), pp. 1267-1280, DOI: 10.1109/jsac.2016.2545539.

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

IEEE Journal on Selected Areas in Communications

DOI

10.1109/jsac.2016.2545539

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access