0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this study, a new self-healing shape memory polymer (SMP) coating was prepared to protect the aluminum alloy 2024-T3 from corrosion by the incorporation of dual-function microspheres containing polycaprolactone and the corrosion inhibitor 8-hydroxyquinoline (8HQ). The self-healing properties of the coatings were investigated via scanning electron microscopy, electrochemical impedance spectroscopy, and scanning electrochemical microscopy following the application of different healing conditions. The results demonstrated that the coating possessed a triple-action self-healing ability enabled by the cooperation of the 8HQ inhibitor, the SMP coating matrix, and the melted microspheres. The coating released 8HQ in a pH-dependent fashion and immediately suppressed corrosion within the coating scratch. After heat treatment, the scratched coating exhibited excellent recovery of its anticorrosion performance, which was attributed to the simultaneous initiation of scratch closure by the shape memory effect of the coating matrix, sealing of the scratch by the melted microspheres, and the synergistic effect of corrosion inhibition by 8HQ.
Yao Huang, Leping Deng, Pengfei Ju, Luyao Huang, Hongchang Qian, Dawei Zhang, Xiaogang Li, Herman Terryn, J.M.C. Mol (2018). Triple-Action Self-Healing Protective Coatings Based on Shape Memory Polymers Containing Dual-Function Microspheres. ACS Applied Materials & Interfaces, 10(27), pp. 23369-23379, DOI: 10.1021/acsami.8b06985.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
ACS Applied Materials & Interfaces
DOI
10.1021/acsami.8b06985
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access