0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessTribotronics is a new field developed by coupling triboelectricity and semiconductor, which can drive triboelectric‐charge‐controlled optoelectronic devices by further introducing optoelectronics. In this paper, a tribotronic phototransistor (TPT) is proposed by coupling a field‐effect phototransistor and a triboelectric nanogenerator (TENG), in which the contact‐induced inner gate voltage by the mobile frictional layer is used for modulating the photodetection characteristics of the TPT. Based on the TPT, alternatively, a coupled energy‐harvester (CEH) is fabricated for simultaneously scavenging solar and wind energies, in which the output voltage on the external resistance from the wind driven TENG is used as the gate voltage of the TPT for enhancing the solar energy conversion. As the wind speed increases, the photovoltaic characteristics of the CEH including the short‐circuit current, open‐circuit voltage, and maximal output power have been greatly enhanced. This work has greatly expanded the functionality of tribotronics in photodetection and energy harvesting, and provided a potential solution for highly efficient harvesting and utilizing multitype energy.
Chi Zhang, Zhao Hua Zhang, Yang Xiang, Tao Zhou, Chang Bao Han, Zhong Lin Wang (2016). Tribotronic Phototransistor for Enhanced Photodetection and Hybrid Energy Harvesting. , 26(15), DOI: https://doi.org/10.1002/adfm.201504919.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
6
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.201504919
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access