Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Transient phenomena during the emptying process of a single pipe with water–air interaction

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

Transient phenomena during the emptying process of a single pipe with water–air interaction

0 Datasets

0 Files

English
2018
Journal of Hydraulic Research
Vol 57 (3)
DOI: 10.1080/00221686.2018.1492465

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Oscar Coronado-hernández
Oscar Coronado-hernández

Institution not specified

Verified
Vicente S. Fuertes-Miquel
Oscar Coronado-hernández
Pedro L. Iglesias‐Rey
+1 more

Abstract

Emptying pipelines can be critical in many water distribution networks because subatmospheric pressure troughs could cause considerable damage to the system due to the expansion of entrapped air. Researchers have given relatively little attention to emptying processes compared to filling processes. The intricacy of computations of this phenomenon makes it difficult to predict the behaviour during emptying, and there are only a few reliable models in the literature. In this work, a computational model for simulating the transient phenomena in single pipes is proposed, and was validated using experimental results. The proposed model is based on a rigid column to analyse water movement, the air–water interface, and air pocket equations. Two practical cases were used to validate the model: (1) a single pipe with the upstream end closed, and (2) a single pipe with an air valve installed on the upstream end. The results show how the model accurately predicts the experimental data, including the pressure oscillation patterns and subatmospheric pressure troughs.

How to cite this publication

Vicente S. Fuertes-Miquel, Oscar Coronado-hernández, Pedro L. Iglesias‐Rey, Daniel Mora-Melià (2018). Transient phenomena during the emptying process of a single pipe with water–air interaction. Journal of Hydraulic Research, 57(3), pp. 318-326, DOI: 10.1080/00221686.2018.1492465.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

Journal of Hydraulic Research

DOI

10.1080/00221686.2018.1492465

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access