0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRecently, precision agriculture has gained substantial attention due to the ever-growing world population demands for food and water. Consequently, farmers will need water and arable land to meet this demand. Due to the limited availability of both resources, farmers need a solution that changes the way they operate. Precision irrigation is the solution to deliver bigger, better, and more profitable yields with fewer resources. Several machine learning-based irrigation models have been proposed to use water more efficiently. Due to the limited learning ability of these models, they are not well suited to unpredictable climates. In this context, this paper proposes a deep learning neural network-based Internet of Things (IoT)-enabled intelligent irrigation system for precision agriculture (DLiSA). This is a feedback integrated system that keeps its functionality better in the weather of any region for any period of time. DLiSA utilizes a long short-term memory network (LSTM) to predict the volumetric soil moisture content for one day ahead, irrigation period, and spatial distribution of water required to feed the arable land. It is evident from the simulation results that DLiSA uses water more wisely than state-of-the-art models in the experimental farming area.
Pankaj Kashyap, Sushil Kumar, Ankita Jaiswal, Mukesh Prasad, Amir Gandomi (2021). Towards Precision Agriculture: IoT-Enabled Intelligent Irrigation Systems Using Deep Learning Neural Network. IEEE Sensors Journal, 21(16), pp. 17479-17491, DOI: 10.1109/jsen.2021.3069266.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Sensors Journal
DOI
10.1109/jsen.2021.3069266
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access