0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe report modifications of the ph-AFQMC algorithm that allow the use of large time steps and reliable time step extrapolation. Our modified algorithm eliminates size-consistency errors present in the standard algorithm when large time steps are employed. We investigate various methods to approximate the exponential of the one-body operator within the AFQMC framework, distinctly demonstrating the superiority of Krylov methods over the conventional Taylor expansion. We assess various propagators within AFQMC and demonstrate that the Split-2 propagator is the optimal method, exhibiting the smallest time-step errors. For the HEAT set molecules, the time-step extrapolated energies deviate on average by only 0.19 kcal/mol from the accurate small time-step energies. For small water clusters, we obtain accurate complete basis-set binding energies using time-step extrapolation with a mean absolute error of 0.07 kcal/mol compared to CCSD(T). Using large time-step ph-AFQMC for the N2 dimer, we show that accurate bond lengths can be obtained while reducing CPU time by an order of magnitude.
Zoran Sukurma, Martin Schlipf, Moritz Humer, Amir Taheridehkordi, Kresse Georg (2024). Toward Large-Scale AFQMC Calculations: Large Time Step Auxiliary-Field Quantum Monte Carlo. Journal of Chemical Theory and Computation, 20(10), pp. 4205-4217, DOI: 10.1021/acs.jctc.4c00304.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Journal of Chemical Theory and Computation
DOI
10.1021/acs.jctc.4c00304
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access