0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Humans learn to drive through both practice and theory, for example, by studying the rules, while most self‐driving systems are limited to the former. Being able to incorporate human knowledge of typical causal driving behavior should benefit autonomous systems. We propose a new approach that learns vehicle control with the help of human advice. Specifically, our system learns to summarize its visual observations in natural language, predict an appropriate action response (eg, “I see a pedestrian crossing, so I stop”), and predict the controls, accordingly. Moreover, to enhance the interpretability of our system, we introduce a fine‐grained attention mechanism that relies on semantic segmentation and object‐centric RoI pooling. We show that our approach of training the autonomous system with human advice, grounded in a rich semantic representation, matches or outperforms prior work in terms of control prediction and explanation generation. Our approach also results in more interpretable visual explanations by visualizing object‐centric attention maps. We evaluate our approach on a novel driving dataset with ground‐truth human explanations, the Berkeley DeepDrive eXplanation (BDD‐X) dataset.
Jinkyu Kim, Anna Rohrbach, Zeynep Akata, Suhong Moon, Teruhisa Misu, Yi‐Ting Chen, Trevor Darrell, John F Canny (2021). Toward explainable and advisable model for self‐driving cars. , 2(4), DOI: https://doi.org/10.1002/ail2.56.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/ail2.56
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access