Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Toward explainable and advisable model for self‐driving cars

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2021

Toward explainable and advisable model for self‐driving cars

0 Datasets

0 Files

en
2021
Vol 2 (4)
Vol. 2
DOI: 10.1002/ail2.56

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
John F Canny
John F Canny

University of California, Berkeley

Verified
Jinkyu Kim
Anna Rohrbach
Zeynep Akata
+5 more

Abstract

Abstract Humans learn to drive through both practice and theory, for example, by studying the rules, while most self‐driving systems are limited to the former. Being able to incorporate human knowledge of typical causal driving behavior should benefit autonomous systems. We propose a new approach that learns vehicle control with the help of human advice. Specifically, our system learns to summarize its visual observations in natural language, predict an appropriate action response (eg, “I see a pedestrian crossing, so I stop”), and predict the controls, accordingly. Moreover, to enhance the interpretability of our system, we introduce a fine‐grained attention mechanism that relies on semantic segmentation and object‐centric RoI pooling. We show that our approach of training the autonomous system with human advice, grounded in a rich semantic representation, matches or outperforms prior work in terms of control prediction and explanation generation. Our approach also results in more interpretable visual explanations by visualizing object‐centric attention maps. We evaluate our approach on a novel driving dataset with ground‐truth human explanations, the Berkeley DeepDrive eXplanation (BDD‐X) dataset.

How to cite this publication

Jinkyu Kim, Anna Rohrbach, Zeynep Akata, Suhong Moon, Teruhisa Misu, Yi‐Ting Chen, Trevor Darrell, John F Canny (2021). Toward explainable and advisable model for self‐driving cars. , 2(4), DOI: https://doi.org/10.1002/ail2.56.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/ail2.56

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access