0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessExoskeletons of Odontodactylus japonicas, the "smasher-type" mantis shrimp, feature a raptorial appendage comprising a Bouligand architecture of chitin nanofibrils with newly observed voids or defects between the polysaccharide α-chitin and protein interfaces. Here, we use a continuous-fiber 3D printing technology to simulate such materials in carbon fiber-reinforced (helicoidal) composites, complete with the presence of voids due to imperfect printing. The specific impact energies of the 3D printed helicoidal composites are clearly superior and further enhanced by the presence of the voids. To explain the role of the Bouligand architecture, interlaminar stresses are computed and found to yield anti-delamination characteristics, and a theoretical model is derived to evaluate the optimal helicoidal architecture. Finite element modeling indicates that the voids tend to deform and coalesce on loading and appear to guide the fracture into the formation of an ideally twisted crack in the printed helicoidal composites, thereby contributing to the impact toughness.
Sha Yin, Haoyu Chen, Ruiheng Yang, Qinghao He, Dianhao Chen, Lin Ye, Yiu‐Wing Mai, Jun Xu, Robert O. Ritchie (2020). Tough Nature-Inspired Helicoidal Composites with Printing-Induced Voids. Cell Reports Physical Science, 1(7), pp. 100109-100109, DOI: 10.1016/j.xcrp.2020.100109.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
9
Datasets
0
Total Files
0
Language
English
Journal
Cell Reports Physical Science
DOI
10.1016/j.xcrp.2020.100109
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access