0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessPerception entails interactions between activated brain visual areas and the records of previous sensations, allowing for processes like figure–ground segregation and object recognition. The aim of this study was to characterize top-down effects that originate in the visual cortex and that are involved in the generation and perception of form. We performed a functional magnetic resonance imaging experiment, where subjects viewed 3 groups of stimuli comprising oriented lines with different levels of recognizable high-order structure (none, collinearity, and meaning). Our results showed that recognizable stimuli cause larger activations in anterior visual and frontal areas. In contrast, when stimuli are random or unrecognizable, activations are greater in posterior visual areas, following a hierarchical organization where areas V1/V2 were less active with "collinearity" and the middle occipital cortex was less active with "meaning." An effective connectivity analysis using dynamic causal modeling showed that high-order visual form engages higher visual areas that generate top-down signals, from multiple levels of the visual hierarchy. These results are consistent with a model in which if a stimulus has recognizable attributes, such as collinearity and meaning, the areas specialized for processing these attributes send top-down messages to the lower levels to facilitate more efficient encoding of visual form.
Velia Cardin, Karl Friston, Semir Zeki (2010). Top-down Modulations in the Visual Form Pathway Revealed with Dynamic Causal Modeling. , 21(3), DOI: https://doi.org/10.1093/cercor/bhq122.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2010
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1093/cercor/bhq122
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access