RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Throughput Maximization for UAV-Enabled Mobile Relaying Systems

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2016

Throughput Maximization for UAV-Enabled Mobile Relaying Systems

0 Datasets

0 Files

English
2016
IEEE Transactions on Communications
Vol 64 (12)
DOI: 10.1109/tcomm.2016.2611512

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Rui Zhang
Rui Zhang

The Chinese University of Hong Kong

Verified
Yong Zeng
Rui Zhang
Teng Joon Lim

Abstract

In this paper, we consider a novel mobile relaying technique, where the relay nodes are mounted on unmanned aerial vehicles (UAVs) and hence are capable of moving at high speed. Compared with conventional static relaying, mobile relaying offers a new degree of freedom for performance enhancement via careful relay trajectory design. We study the throughput maximization problem in mobile relaying systems by optimizing the source/relay transmit power along with the relay trajectory, subject to practical mobility constraints (on the UAV's speed and initial/final relay locations), as well as the information-causality constraint at the relay. It is shown that for the fixed relay trajectory, the throughput-optimal source/relay power allocations over time follow a “staircase” water filling structure, with non-increasing and non-decreasing water levels at the source and relay, respectively. On the other hand, with given power allocations, the throughput can be further improved by optimizing the UAV's trajectory via successive convex optimization. An iterative algorithm is thus proposed to optimize the power allocations and relay trajectory alternately. Furthermore, for the special case with free initial and final relay locations, the jointly optimal power allocation and relay trajectory are derived. Numerical results show that by optimizing the trajectory of the relay and power allocations adaptive to its induced channel variation, mobile relaying is able to achieve significant throughput gains over the conventional static relaying.

How to cite this publication

Yong Zeng, Rui Zhang, Teng Joon Lim (2016). Throughput Maximization for UAV-Enabled Mobile Relaying Systems. IEEE Transactions on Communications, 64(12), pp. 4983-4996, DOI: 10.1109/tcomm.2016.2611512.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2016

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

IEEE Transactions on Communications

DOI

10.1109/tcomm.2016.2611512

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access