0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAdsorbed surface ligands play an important role in determining the chemical and physical properties of colloidal semiconductor nanocrystals. Most particularly, these ligands influence the optical properties of these nanocrystals. For instance, the luminescence of type II–VI quantum dots has been shown to decrease as metal carboxylates are stripped from the surface. To gain a better understanding of the thermodynamics and equilibria that influence the optical properties of colloidal quantum dots, we studied the adsorption energies of aliphatic cadmium carboxylates to the surfaces of cadmium sulfide quantum dots. Direct calorimetric measurements of the adsorption energies of such ligands have previously proven to be challenging because they are tightly adsorbed to the quantum dot surface. Here, we show that tetrahydrofuran can be used as a coordinating solvent, allowing cadmium oleates to more easily be stripped from the surface, thereby creating a dynamic ligand equilibrium. Taking advantage of this dynamic equilibrium, ligand-deficient cadmium sulfide quantum dots were prepared, and the adsorption energy of adding cadmium oleate to the surface was measured via isothermal titration calorimetry. Quantum chemical calculations were performed to investigate the binding energy of the cadmium complex with tetrahydrofuran and to calculate the adsorption energy of cadmium oleate to the surface of cadmium sulfide in the absence of a coordinating solvent. Additionally, a modified Ising-model-based simulation was used to estimate the enthalpic and entropic contributions of interligand interactions to the reaction thermodynamics, which play a significant role in describing the quantum dot surface. Lastly, the effects of a dynamic ligand shell on the optical properties of quantum dots were studied, suggesting that a static ligand shell provides higher quantum yields.
Jason J. Calvin, Assaf Ben‐Moshe, Ethan B. Curling, Amanda S. Brewer, Adam B Sedlak, Tierni M. Kaufman, Paul Alivisatos, Jason J. Calvin, Assaf Ben‐Moshe, Ethan B. Curling, Amanda S. Brewer, Adam B Sedlak, Tierni M. Kaufman, Paul Alivisatos (2022). Thermodynamics of the Adsorption of Cadmium Oleate to Cadmium Sulfide Quantum Dots and Implications of a Dynamic Ligand Shell. , 126(30), DOI: https://doi.org/10.1021/acs.jpcc.2c04223.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
14
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acs.jpcc.2c04223
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration