0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRhombic dodecahedral nanocrystals have been considered particularly difficult to synthesize because they are enclosed by {110}, a low-index facet with the greatest surface energy. Recently, we demonstrated the use of seed-mediated growth for the facile and robust synthesis of Au rhombic dodecahedral nanocrystals (AuRD). While the unique shape and surface structure of AuRD are desirable for potential applications in plasmonics and catalysis, respectively, their high surface energy makes them highly susceptible to thermal degradation. Here we demonstrate that it is feasible to greatly improve the thermal stability with some sacrifice to the plasmonic properties of the original AuRD by coating their surface with an ultrathin shell made of Pt. Our in situ electron microscopy analysis indicates that the ultrathin Pt coating can increase the thermal stability from 60 up to 450 °C, a trend that is also supported by the results from a computational study.
Veronica Pawlik, Xiaohuan Zhao, Marc Figueras, Trenton J. Wolter, Zachary D. Hood, Yong Ding, Jingyue Liu, Miaofang Chi, Manos Mavrikakis, Younan Xia (2024). Thermal Stability of Au Rhombic Dodecahedral Nanocrystals Can Be Greatly Enhanced by Coating Their Surface with an Ultrathin Shell of Pt. , 24(2), DOI: https://doi.org/10.1021/acs.nanolett.3c02680.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acs.nanolett.3c02680
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access