Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. The Role of Nanocluster Aggregation, Coalescence, and Recrystallization in the Electrochemical Deposition of Platinum Nanostructures

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2014

The Role of Nanocluster Aggregation, Coalescence, and Recrystallization in the Electrochemical Deposition of Platinum Nanostructures

0 Datasets

0 Files

English
2014
Chemistry of Materials
Vol 26 (7)
DOI: 10.1021/cm403178b

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Herman Terryn
Herman Terryn

Institution not specified

Verified
Jon Ustarroz
Thomas Altantzis
Joshua A. Hammons
+3 more

Abstract

By using an optimized characterization approach that combines aberration-corrected transmission electron microscopy, electron tomography, and in situ ultrasmall angle X-ray scattering (USAXS), we show that the early stages of Pt electrochemical growth on carbon substrates may be affected by the aggregation, self-alignment, and partial coalescence of nanoclusters of d ≈ 2 nm. The morphology of the resulting nanostructures depends on the degree of coalescence and recrystallization of nanocluster aggregates, which in turn depends on the electrodeposition potential. At low overpotentials, a self-limiting growth mechanism may block the epitaxial growth of primary nanoclusters and results in loose dendritic aggregates. At more negative potentials, the extent of nanocluster coalescence and recrystallization is larger and further growth by atomic incorporation may be allowed. On one hand, this suggests a revision of the Volmer–Weber island growth mechanism. Whereas this theory has traditionally assumed direct attachment as the only growth mechanism, it is suggested that nanocluster self-limiting growth, aggregation, and coalescence should also be taken into account during the early stages of nanoscale electrodeposition. On the other hand, depending on the deposition potential, ultrahigh porosities can be achieved, turning electrodeposition in an ideal process for highly active electrocatalyst production without the need of using high surface area carbon supports.

How to cite this publication

Jon Ustarroz, Thomas Altantzis, Joshua A. Hammons, Annick Hubin, Sara Bals, Herman Terryn (2014). The Role of Nanocluster Aggregation, Coalescence, and Recrystallization in the Electrochemical Deposition of Platinum Nanostructures. Chemistry of Materials, 26(7), pp. 2396-2406, DOI: 10.1021/cm403178b.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2014

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Chemistry of Materials

DOI

10.1021/cm403178b

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access