0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessObjectives Clinical prediction models that support treatment decisions are usually evaluated for their ability to predict the risk of an outcome rather than treatment benefit–the difference between outcome risk with vs. without therapy. We aimed to define performance metrics for a model's ability to predict treatment benefit. Study Design and Setting We analyzed data of the Synergy between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery (SYNTAX) trial and of three recombinant tissue plasminogen activator trials. We assessed alternative prediction models with a conventional risk concordance-statistic (c-statistic) and a novel c-statistic for benefit. We defined observed treatment benefit by the outcomes in pairs of patients matched on predicted benefit but discordant for treatment assignment. The ‘c-for-benefit’ represents the probability that from two randomly chosen matched patient pairs with unequal observed benefit, the pair with greater observed benefit also has a higher predicted benefit. Results Compared to a model without treatment interactions, the SYNTAX score II had improved ability to discriminate treatment benefit (c-for-benefit 0.590 vs. 0.552), despite having similar risk discrimination (c-statistic 0.725 vs. 0.719). However, for the simplified stroke–thrombolytic predictive instrument (TPI) vs. the original stroke-TPI, the c-for-benefit (0.584 vs. 0.578) was similar. Conclusion The proposed methodology has the potential to measure a model's ability to predict treatment benefit not captured with conventional performance metrics.
David van Klaveren, Ewout W. Steyerberg, Patrick W. Serruys, David M. Kent (2017). The proposed ‘concordance-statistic for benefit’ provided a useful metric when modeling heterogeneous treatment effects. Journal of Clinical Epidemiology, 94, pp. 59-68, DOI: 10.1016/j.jclinepi.2017.10.021.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Journal of Clinical Epidemiology
DOI
10.1016/j.jclinepi.2017.10.021
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access