0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAn elaborative study was carried out on the growth mechanism and properties of the passive film for a new kind of alloyed corrosion-resistant steel (CR steel). The passive film naturally formed in simulated concrete pore solutions (pH = 13.3). The corrosion resistance was evaluated by various methods including open circuit potential (OCP), linear polarization resistance (LPR) measurements, and electrochemical impedance spectroscopy (EIS). Meanwhile, the 2205 duplex stainless steel (SS steel) was evaluated for comparison. Moreover, the passive film with CR steel was studied by means of X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Atomic Force Microscope (AFM), and the Mott‑Schottky approach. The results showed that the excellent passivity of CR steel could be detected in a high alkaline environment. The grain boundaries between the fine passive film particles lead to increasing Cr oxide content in the later passivation stage. The filling of cation vacancies in the later passivation stage as well as the orderly crystalized inner layer contributed to the excellent corrosion resistance of CR steel. A passive film growth model for CR steel was proposed.
Jinyang Jiang, Danqian Wang, Hongyan Chu, Han Ma, Yao Liu, Yun Gao, Jinjie Shi, Wei Sun (2017). The Passive Film Growth Mechanism of New Corrosion-Resistant Steel Rebar in Simulated Concrete Pore Solution: Nanometer Structure and Electrochemical Study. Materials, 10(4), pp. 412-412, DOI: 10.3390/ma10040412.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Materials
DOI
10.3390/ma10040412
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access