RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. The Network Structure of Symptoms of the Diagnostic and Statistical Manual of Mental Disorders

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2015

The Network Structure of Symptoms of the Diagnostic and Statistical Manual of Mental Disorders

0 Datasets

0 Files

English
2015
PLoS ONE
Vol 10 (9)
DOI: 10.1371/journal.pone.0137621

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Denny Borsboom
Denny Borsboom

University Of Amsterdam

Verified
Lynn Boschloo
Claudia D. van Borkulo
Mijke Rhemtulla
+3 more

Abstract

Although current classification systems have greatly contributed to the reliability of psychiatric diagnoses, they ignore the unique role of individual symptoms and, consequently, potentially important information is lost. The network approach, in contrast, assumes that psychopathology results from the causal interplay between psychiatric symptoms and focuses specifically on these symptoms and their complex associations. By using a sophisticated network analysis technique, this study constructed an empirically based network structure of 120 psychiatric symptoms of twelve major DSM-IV diagnoses using cross-sectional data of the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC, second wave; N = 34,653). The resulting network demonstrated that symptoms within the same diagnosis showed differential associations and indicated that the strategy of summing symptoms, as in current classification systems, leads to loss of information. In addition, some symptoms showed strong connections with symptoms of other diagnoses, and these specific symptom pairs, which both concerned overlapping and non-overlapping symptoms, may help to explain the comorbidity across diagnoses. Taken together, our findings indicated that psychopathology is very complex and can be more adequately captured by sophisticated network models than current classification systems. The network approach is, therefore, promising in improving our understanding of psychopathology and moving our field forward.

How to cite this publication

Lynn Boschloo, Claudia D. van Borkulo, Mijke Rhemtulla, Katherine M. Keyes, Denny Borsboom, Robert A. Schoevers (2015). The Network Structure of Symptoms of the Diagnostic and Statistical Manual of Mental Disorders. PLoS ONE, 10(9), pp. e0137621-e0137621, DOI: 10.1371/journal.pone.0137621.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2015

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

PLoS ONE

DOI

10.1371/journal.pone.0137621

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access