0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe function of miR165/166 in plant growth and development has been extensively studied, however, its roles in abiotic stress responses remain largely unknown. Here, we report that reduction in the expression of miR165/166 conferred a drought and cold resistance phenotype and hypersensitivity to ABA during seed germination and post-germination seedling development. We further show that the ABA hypersensitive phenotype is associated with a changed transcript abundance of ABA-responsive genes and a higher expression level of ABI4, which can be directly regulated by a miR165/166 target. Additionally, we found that reduction in miR165/166 expression leads to elevated ABA levels, which occurs at least partially through the increased expression of BG1, a gene that is directly regulated by a miR165/166 target. Taken together, our results uncover a novel role for miR165/166 in the regulation of ABA and abiotic stress responses and control of ABA homeostasis.
Jun Yan, Chunzhao Zhao, Jianping Zhou, Yu Yang, Pengcheng Wang, Xiaohong Zhu, Guiliang Tang, Ray A. Bressan, Jian Kang Zhu (2016). The miR165/166 Mediated Regulatory Module Plays Critical Roles in ABA Homeostasis and Response in Arabidopsis thaliana. , 12(11), DOI: https://doi.org/10.1371/journal.pgen.1006416.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
9
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1371/journal.pgen.1006416
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access