0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessForest biomass is an essential indicator for monitoring the Earth's ecosystems and climate. It is a critical input to greenhouse gas accounting, estimation of carbon losses and forest degradation, assessment of renewable energy potential, and for developing climate change mitigation policies such as REDD+, among others. Wall-to-wall mapping of aboveground biomass (AGB) is now possible with satellite remote sensing (RS). However, RS methods require extant, up-to-date, reliable, representative and comparable in situ data for calibration and validation. Here, we present the Forest Observation System (FOS) initiative, an international cooperation to establish and maintain a global in situ forest biomass database. AGB and canopy height estimates with their associated uncertainties are derived at a 0.25 ha scale from field measurements made in permanent research plots across the world's forests. All plot estimates are geolocated and have a size that allows for direct comparison with many RS measurements. The FOS offers the potential to improve the accuracy of RS-based biomass products while developing new synergies between the RS and ground-based ecosystem research communities.
Dmitry Schepaschenko, Jérôme Chave, Oliver L. Phillips, Simon L. Lewis, Stuart J. Davies, Maxime Réjou‐Méchain, Plínio Sist, Klaus Scipal, Christoph Perger, Bruno Hérault, Nicolas Labrière, Florian Hofhansl, Kofi Affum‐Baffoe, А. А. Алейников, Alfonso Alonso, Christian Amani, Alejandro Araujo‐Murakami, John Armston, Luzmila Arroyo, Nataly Ascarrunz, C. P. de Azevedo, Timothy R. Baker, Radomir Bałazy, Caroline Bedeau, Nicholas Berry, Andrii Bilous, Svіtlana Bilous, Pulchérie Bissiengou, Lilian Blanc, К. С. Бобкова, Tatyana Braslavskaya, Roel Brienen, David F. R. P. Burslem, Richard Condit, Aida Cuní‐Sanchez, Д. М. Данилина, Dennis Del Castillo Torres, Géraldine Derroire, Laurent Descroix, Eleneide Doff Sotta, Marcus VN d'Oliveira, Christopher Dresel, Terry L. Erwin, М. Д. Евдокименко, Jan Falck, Ted R. Feldpausch, Ernest G. Foli, Robin B. Foster, Steffen Fritz, Antonio García‐Abril, А. В. Горнов, М. В. Горнова, Ernest Gothard-Bassébé, Sylvie Gourlet‐Fleury, Marcelino Carneiro Guedes, Keith C. Hamer, Farida Herry Susanty, Níro Higuchi, Eurídice N. Honorio Coronado, Wannes Hubau, Stephen P. Hubbell, Ulrik Ilstedt, В. В. Иванов, Milton Kanashiro, Anders Karlsson, Viktor Karminov, Timothy J. Killeen, Jean-Claude Konan Koffi, Maria E. Konovalova, Florian Kraxner, Jan Krejza, Haruni Krisnawati, Leonid Krivobokov, M. A. Kuznetsov, Ivan Lakyda, Petro Lakyda, Juan Carlos Licona, Richard Lucas, Н. В. Лукина, Daniel Lussetti, Yadvinder Malhi, J. A. Manzanera, Beatriz Schwantes Marimon, Ben Hur Marimon, Rodolfo Vásquez, О. В. Мартыненко, Maksym Matsala, Raisa K. Matyashuk, Lucas Mazzei, Hervé Memiaghe, Casimiro Mendoza, Abel Monteagudo Mendoza, Olga V. Moroziuk, Liudmila Mukhortova, Samsudin Musa, Д. И. Назимова, Toshinori Okuda, Luís Cláudio de Oliveira, Petr Ontikov, А. Ф. Осипов (2019). The Forest Observation System, building a global reference dataset for remote sensing of forest biomass. Scientific Data, 6(1), DOI: 10.1038/s41597-019-0196-1.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
100
Datasets
0
Total Files
0
Language
English
Journal
Scientific Data
DOI
10.1038/s41597-019-0196-1
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access