0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessOur body clock drives rhythms in the expression of genes that have a 24-h periodicity. The transcription factor BMAL1 is a crucial component of the molecular clock. A number of physiological processes, including immune function, are modulated by the circadian clock. Asthma, a disease with very strong clinical evidence demonstrating regulation by circadian variation, is of particular relevance to circadian control of immunity. Airway hypersensitivity and asthma attacks are more common at night in humans. The molecular basis for this is unknown, and there is no model of asthma in animals with genetic distortion of the molecular clock. We used mice lacking BMAL1 in myeloid cells (BMAL1-LysM-/-) to determine the role of BMAL1 in allergic asthma. Using the ovalbumin model of allergic asthma, we demonstrated markedly increased asthma features, such as increased lung inflammation, demonstrated by drastically higher numbers of eosinophils and increased IL-5 levels in the lung and serum, in BMAL1-LysM-/- mice. In vitro studies demonstrated increased proinflammatory chemokine and mannose receptor expression in IL-4- as well as LPS-treated macrophages from BMAL1-LysM-/- mice compared with wild-type controls. This suggests that Bmal1 is a potent negative regulator in myeloid cells in the context of allergic asthma. Our findings might explain the increase in asthma incidents during the night, when BMAL1 expression is low.
Zbigniew Zasłona, Sarah Case, James O. Early, Stephen J. Lalor, Rachel M. McLoughlin, Annie M. Curtis, Luke O'neill (2017). The circadian protein BMAL1 in myeloid cells is a negative regulator of allergic asthma. AJP Lung Cellular and Molecular Physiology, 312(6), pp. L855-L860, DOI: 10.1152/ajplung.00072.2017.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2017
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
AJP Lung Cellular and Molecular Physiology
DOI
10.1152/ajplung.00072.2017
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access