RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Textile Triboelectric Nanogenerators Simultaneously Harvesting Multiple “High-Entropy” Kinetic Energies

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2021

Textile Triboelectric Nanogenerators Simultaneously Harvesting Multiple “High-Entropy” Kinetic Energies

0 Datasets

0 Files

en
2021
Vol 13 (17)
Vol. 13
DOI: 10.1021/acsami.1c03250

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Zhong Lin Wang
Zhong Lin Wang

Beijing Institute of Technology

Verified
Xuechao Gang
Zi Hao Guo
Zifeng Cong
+5 more

Abstract

Distributed renewable kinetic energies are ubiquitous but with irregular amplitudes and frequencies, which, as one category of "high-entropy" energies, are crucial for next-generation self-powered electronics. Herein, we present a flexible waterproof dual-mode textile triboelectric nanogenerator (TENG), which can simultaneously scavenge multiple "high-entropy" kinetic energies, including human motions, raindrops, and winds. A freestanding-mode textile TENG (F-TENG) and a contact-separation-mode textile TENG (CS-TENG) are integrated together. The structure parameters of the textile TENG are optimized to improve the output performances. The raindrop can generate a voltage of up to ∼4.3 V and a current of about ∼6 μA, while human motion can generate a voltage of over 120 V and a peak power density of ∼500 mW m–2. The scavenged electrical energies can be stored in capacitors for powering small electronics. Therefore, we demonstrated a facile preparation of a TENG-based energy textile that is highly promising for kinetic energy harvesting and self-powered electronics.

How to cite this publication

Xuechao Gang, Zi Hao Guo, Zifeng Cong, Jing Wang, Caiyun Chang, Chongxiang Pan, Xiong Pu, Zhong Lin Wang (2021). Textile Triboelectric Nanogenerators Simultaneously Harvesting Multiple “High-Entropy” Kinetic Energies. , 13(17), DOI: https://doi.org/10.1021/acsami.1c03250.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acsami.1c03250

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access