0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessRapid onset droughts, termed as “flash droughts”, cause short-term but serious threats to terrestrial ecosystems and influence carbon dynamics due to insufficient warning. To date, how the regional terrestrial carbon dynamics respond to flash droughts in India remains unknown. Since, India is highly dependent on its cropland and vegetation, identifying the influence of flash droughts on terrestrial ecosystem is important. Here we use MODIS remote sensing satellite sensor based gross primary productivity (GPP) and remote sensing-based soil moisture data to compute the response of ecosystems to flash droughts in India. From the investigation, it was observed that GPP responds to more than 95% of the flash droughts across India, with the highest response frequency occurring over Ganga basin and southern India while the lowest response across northeastern India. The discrepancies in the response frequencies are mainly attributed to different vegetation resilience conditions across different parts of the country. Moreover, the mean response time is about 10 to 19 days averaged over India, with the lowest and highest response time over Indus-Ganga basins and northeastern Indian river basins (including the Brahmaputra, Minor rivers draining into Myanmar basin (MRMB), and Barak basins), respectively. Severe reduction in water use efficiency (WUE) was observed for the Ganga river basin and some parts of southern India, which highlighted the non-resilient nature of ecosystem towards rapid soil moisture variations. The study facilitates the identification of flash drought hotspots in the country including the Indus basin, Southern river basins (Cauveri, EFRPCP, and EFRSCB basins), some parts of the Ganga basin, and the ability of an ecosystem to withstand such drastic conditions. These findings highlight the need to adopt essential drought mitigation measures to safeguard the sustainability of ecosystems.
Vikas Poonia, Manish Kumar Goyal, Srinidhi Jha, Saket Dubey (2021). Terrestrial ecosystem response to flash droughts over India. Journal of Hydrology, 605, pp. 127402-127402, DOI: 10.1016/j.jhydrol.2021.127402.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
Journal of Hydrology
DOI
10.1016/j.jhydrol.2021.127402
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access