RDL logo
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
​
​
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. TAX1BP1-dependent autophagic degradation of STING1 impairs anti-tumor immunity

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2025

TAX1BP1-dependent autophagic degradation of STING1 impairs anti-tumor immunity

0 Datasets

0 Files

en
2025
DOI: 10.1080/15548627.2025.2471736

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Guido Guido Kroemer
Guido Guido Kroemer

Institution not specified

Verified
Ruoxi Zhang
Chunhua Yu
Herbert J. Zeh
+4 more

Abstract

The activation of STING1 can lead to the production and secretion of cytokines, initiating antitumor immunity. Here, we screened an ion channel ligand library and identified tetrandrine, a bis-benzylisoquinoline alkaloid, as an immunological adjuvant that enhances antitumor immunity by preventing the autophagic degradation of the STING1 protein. This tetrandrine effect is independent of its known function as a calcium or potassium channel blocker. Instead, tetrandrine inhibits lysosomal function, impairing cathepsin maturation, and autophagic degradation. Proteomic analysis of lysosomes identified TAX1BP1 as a novel autophagic receptor for the proteolysis of STING1. TAX1BP1 recognizes STING1 through the physical interaction of its coiled-coil domain with the cyclic dinucleotide binding domain of STING1. Systematic mutation of lysine (K) residues revealed that K63-ubiquitination of STING1 at the K224 site ignites TAX1BP1-dependent STING1 degradation. Combined treatment with tetrandrine and STING1 agonists promotes antitumor immunity by converting "cold" pancreatic cancers into "hot" tumors. This process is associated with enhanced cytokine release and increased infiltration of cytotoxic T-cells into the tumor microenvironment. The antitumor immunity mediated by tetrandrine and STING1 agonists is limited by neutralizing antibodies to the type I interferon receptor or CD8+ T cells. Thus, these findings establish a potential immunotherapeutic strategy against pancreatic cancer by preventing the autophagic degradation of STING1.

How to cite this publication

Ruoxi Zhang, Chunhua Yu, Herbert J. Zeh, Guido Guido Kroemer, Daniel J. Klionsky, Daolin Tang, Rui Kang (2025). TAX1BP1-dependent autophagic degradation of STING1 impairs anti-tumor immunity. , DOI: https://doi.org/10.1080/15548627.2025.2471736.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2025

Authors

7

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1080/15548627.2025.2471736

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access