0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free Access<title>Abstract</title> The high rates of protein synthesis and processing render multiple myeloma (MM) cells vulnerable to perturbations in protein homeostasis. The induction of proteotoxic stress by targeting protein degradation with proteasome inhibitors (PI) has revolutionized the treatment of MM. However, resistance to PI is inevitable and represents an ongoing clinical challenge. Our first-in-human study of the selective inhibitor of RNA polymerase I transcription of ribosomal RNA genes, CX-5461 has demonstrated a potential signal for anti-tumor activity in three of six heavily pre-treated MM patients. Here we show that CX-5461 has potent antimyeloma activity in PI-resistant MM preclinical models in vitro and in vivo. In addition to inhibiting ribosome biogenesis, CX-5461 causes topoisomerase II trapping and replication-dependent DNA damage, leading to G2/M cell cycle arrest and apoptotic cell death. Surprisingly, the addition of PI does not enhance the therapeutic benefit of CX-5461. In contrast, CX-5461 shows synergistic interaction with the histone deacetylase inhibitor panobinostat in both the Vk*MYC and the 5T33-KaLwRij mouse models of MM by targeting ribosome biogenesis and protein synthesis through distinct mechanisms. Our findings thus provide strong evidence to facilitate the clinical development of targeting the ribosome to treat relapsed and refractory MM.
Kylee Maclachlan, Kezia Gitareja, Jian Kang, Andrew Cuddihy, Yuxi Cao, Nadine Hein, Carleen Cullinane, Ching‐Seng Ang, Natalie Brajanovski, Richard B. Pearson, Amit Khot, Elaine Sanij, Ross D. Hannan, Gretchen Poortinga, Simon J. Harrison (2023). Targeting the ribosome to treat multiple myeloma. , DOI: https://doi.org/10.21203/rs.3.rs-3582717/v1.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
15
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.21203/rs.3.rs-3582717/v1
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access