0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNanostructures, which have sizes comparable to biological functional units involved in cellular communication, offer the potential for enhanced sensitivity and spatial resolution compared to planar metal and semiconductor structures. Silicon nanowire (SiNW) field-effect transistors (FETs) have been used as a platform for biomolecular sensors, which maintain excellent signal-to-noise ratios while operating on lengths scales that enable efficient extra- and intracellular integration with living cells. Although the NWs are tens of nanometers in diameter, the active region of the NW FET devices typically spans micrometers, limiting both the length and time scales of detection achievable with these nanodevices. Here, we report a new synthetic method that combines gold-nanocluster-catalyzed vapor-liquid-solid (VLS) and vapor-solid-solid (VSS) NW growth modes to produce synthetically encoded NW devices with ultrasharp (<5 nm) n-type highly doped (n(++)) to lightly doped (n) transitions along the NW growth direction, where n(++) regions serve as source/drain (S/D) electrodes and the n-region functions as an active FET channel. Using this method, we synthesized short-channel n(++)/n/n(++) SiNW FET devices with independently controllable diameters and channel lengths. SiNW devices with channel lengths of 50, 80, and 150 nm interfaced with spontaneously beating cardiomyocytes exhibited well-defined extracellular field potential signals with signal-to-noise values of ca. 4 independent of device size. Significantly, these "pointlike" devices yield peak widths of ∼500 μs, which is comparable to the reported time constant for individual sodium ion channels. Multiple FET devices with device separations smaller than 2 μm were also encoded on single SiNWs, thus enabling multiplexed recording from single cells and cell networks with device-to-device time resolution on the order of a few microseconds. These short-channel SiNW FET devices provide a new opportunity to create nanoscale biomolecular sensors that operate on the length and time scales previously inaccessible by other techniques but necessary to investigate fundamental, subcellular biological processes.
Tzahi Cohen‐Karni, D. Casanova, James F. Cahoon, Quan Qing, David C. Bell, Charles M. Lieber (2012). Synthetically Encoded Ultrashort-Channel Nanowire Transistors for Fast, Pointlike Cellular Signal Detection. Nano Letters, 12(5), pp. 2639-2644, DOI: 10.1021/nl3011337.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
6
Datasets
0
Total Files
0
Language
English
Journal
Nano Letters
DOI
10.1021/nl3011337
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access