Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Synthetically Encoded Ultrashort-Channel Nanowire Transistors for Fast, Pointlike Cellular Signal Detection

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2012

Synthetically Encoded Ultrashort-Channel Nanowire Transistors for Fast, Pointlike Cellular Signal Detection

0 Datasets

0 Files

English
2012
Nano Letters
Vol 12 (5)
DOI: 10.1021/nl3011337

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Charles M. Lieber
Charles M. Lieber

Harvard University

Verified
Tzahi Cohen‐Karni
D. Casanova
James F. Cahoon
+3 more

Abstract

Nanostructures, which have sizes comparable to biological functional units involved in cellular communication, offer the potential for enhanced sensitivity and spatial resolution compared to planar metal and semiconductor structures. Silicon nanowire (SiNW) field-effect transistors (FETs) have been used as a platform for biomolecular sensors, which maintain excellent signal-to-noise ratios while operating on lengths scales that enable efficient extra- and intracellular integration with living cells. Although the NWs are tens of nanometers in diameter, the active region of the NW FET devices typically spans micrometers, limiting both the length and time scales of detection achievable with these nanodevices. Here, we report a new synthetic method that combines gold-nanocluster-catalyzed vapor-liquid-solid (VLS) and vapor-solid-solid (VSS) NW growth modes to produce synthetically encoded NW devices with ultrasharp (<5 nm) n-type highly doped (n(++)) to lightly doped (n) transitions along the NW growth direction, where n(++) regions serve as source/drain (S/D) electrodes and the n-region functions as an active FET channel. Using this method, we synthesized short-channel n(++)/n/n(++) SiNW FET devices with independently controllable diameters and channel lengths. SiNW devices with channel lengths of 50, 80, and 150 nm interfaced with spontaneously beating cardiomyocytes exhibited well-defined extracellular field potential signals with signal-to-noise values of ca. 4 independent of device size. Significantly, these "pointlike" devices yield peak widths of ∼500 μs, which is comparable to the reported time constant for individual sodium ion channels. Multiple FET devices with device separations smaller than 2 μm were also encoded on single SiNWs, thus enabling multiplexed recording from single cells and cell networks with device-to-device time resolution on the order of a few microseconds. These short-channel SiNW FET devices provide a new opportunity to create nanoscale biomolecular sensors that operate on the length and time scales previously inaccessible by other techniques but necessary to investigate fundamental, subcellular biological processes.

How to cite this publication

Tzahi Cohen‐Karni, D. Casanova, James F. Cahoon, Quan Qing, David C. Bell, Charles M. Lieber (2012). Synthetically Encoded Ultrashort-Channel Nanowire Transistors for Fast, Pointlike Cellular Signal Detection. Nano Letters, 12(5), pp. 2639-2644, DOI: 10.1021/nl3011337.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2012

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Nano Letters

DOI

10.1021/nl3011337

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access